Sunday, January 8, 2012

Taylor Series

In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are calculated from the values of the function's derivatives at a single point.
The concept of a Taylor series was formally introduced by the English mathematician Brook Taylor in 1715. If the Taylor series is centered at zero, then that series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.
It is common practice to approximate a function by using a finite number of terms of its Taylor series. Taylor's theorem gives quantitative estimates on the error in this approximation. Any finite number of initial terms of the Taylor series of a function is called a Taylor polynomial. The Taylor series of a function is the limit of that function's Taylor polynomials, provided that the limit exists. A function may not be equal to its Taylor series, even if its Taylor series converges at every point. A function that is equal to its Taylor series in an open interval (or a disc in the complex plane) is known as an analytic function.

The Taylor series of a real or complex function ƒ(x) that is infinitely differentiable in a neighborhood of a real or complex number a is the power series
f(a)+\frac {f'(a)}{1!} (x-a)+ \frac{f''(a)}{2!} (x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+ \cdots.
which can be written in the more compact sigma notation as
 \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n}
where n! denotes the factorial of n and ƒ (n)(a) denotes the nth derivative of ƒ evaluated at the point a. The zeroth derivative of ƒ is defined to be ƒ itself and (x − a)0 and 0! are both defined to be 1. In the case that a = 0, the series is also called a Maclaurin series.

The Maclaurin series for any polynomial is the polynomial itself.
The Maclaurin series for (1 − x)−1 for |x| < 1 is the geometric series
so the Taylor series for x−1 at a = 1 is
By integrating the above Maclaurin series we find the Maclaurin series for log(1 − x), where log denotes the natural logarithm:
and the corresponding Taylor series for log(x) at a = 1 is
The Taylor series for the exponential function ex at a = 0 is
1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}+ \cdots = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \cdots\! = \sum_{n=0} ^ {\infin} \frac{x^n}{n!}.
The above expansion holds because the derivative of ex with respect to x is also ex and e0 equals 1. This leaves the terms (x − 0)n in the numerator and n! in the denominator for each 


  1. Ποτέ δεν κατάλαβα γιατι όλο ασχολούμαστε με τον Maclaurin ενώ οι σειρές είναι του Taylor..

  2. Η αλήθεια είναι ότι όταν δημοσίευσε το έργο του "Methodus incrementorum directa et inversa" δεν είχε υπόψιν του ότι ο Taylor τον είχε προλάβει..Το χειρότερο όλων είναι ότι ο Taylor είχε ασχοληθεί με κάτι πολύ γενικότερο..Πιστεύω ότι είναι ένα από τα πιο "πικρά ποτήρια" στην ζωή ενός επιστήμονα..

  3. Αυτό ακριβώς!Οι Maclaurin είναι ειδική περίπτωση του Taylor...Κρίμα και άδικο...